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1. Introduction.

The theory of multivariate analysis has been based mainly on the
normal population. Statisticians have been trying to extend the sample
theory in multivariate analysis to cases of the observations being
not necessérily either normal or independent. In the last decade,
especially the last five years, many statisticians have been
interested in a specific class of distributions, one of elliptically
contoured distributions, and found that this class has many properties
similar to the normal distribution.

If the c.f. (charcteristic function) of an n-dimensional random
vector X has the form EXP(iE'E)¢(E'§E)’ where K nxl, E: nxn
and E > 0, we say that X has an elliptically contoured distribution
with parameters U, §, and ¢, and write X ECn(B’§’¢)' When M= 9

and X = In, we call ECn(O,In,¢) a spherical distribution and write

X v Sn(¢), because x Vv Sn(¢) iff x d I'x for each T ¢ 0(n), where

Q(n) is the set of nxn orthogonal matrices and the notation ”§ d Z"
means that X and y have the same distribution.

As an extension of multivariate normal sampling theory, several
classes of spherical matrix distributions are defined and have been

discussed by many authors. Here are the main three classes.

Definition 1. Let X = (xl,...,xp) be an nXp random matrix.

) Fl = {X: IX d X for every T € 0(n)}. The X in Fl is called

left-spherical by Dawid (1977).
d
(2) F2 = {§. (T fl""’zpfp) = (§l,...,§p) for every Ei € 0(n),

(3) F3 = {X: T'(vecX) d vec X for every T € O(np)}. Each of Fl’ F2,

and F3 is called a class of spherical matrix distributions.



These classes contain many important distributions, such as the
multivariate normal distributions, the multivariate t-distributions,
the multivariate Beta-distributions and the multivariate stable laws.
The class Fl was studied by Dawid (1977, 1978), Fraser and Ng (1980),
Jensen and Good (1981), and Kariya (198la and b). The class FZ was
defined by Anderson and Fang (1982b), and the class F3 was discussed
by Chmielewski (1980), Kariya (1981la), Jensen and Good (1981) and
Anderson and Fang (1982b and c¢). They have found that many statistics
are invariant in these classes. However the relationships among these
classes are not yet very clear. Therefore it may be valuable to
consider the relationships among them.

Throughout this paper, X = (§l,...,§p) = (§(l)""’§(n))' = (xij)
denotes an nXp random matrix with a > p, En denotes the nXn
identity matrix, diag(al,...,an) denotes an nXn diagonal matrix with
diagonal elements él,...,an, é', rké and tré denote the transpose of

(n)

denotes a random vector

~

A, the rank of é and the trace of é, u
which is uniformly distributed on the unit sphere in Rn, and Qn(E'E)
denotes its c.f.

In Section 2 some basic properties about them are listed. Sections
3 and 4 are the main part of the paper. In the last section we summarize

the invariant distributions in these classes as a table for applications.

2. Preliminary.

In this section we recall some basic properties of Fl’ F and F3

27
which will-be used frequently in this paper. The following lemmas and

Theorem 1 are from Dawid (1977), Kariya (1981), and Anderson and Fang (1982b).



Let T = (tl,...,tp) be an nXp matrix.

(1) X ¢ Fl iff the c.f. of X has the form ¢(T'T);

. ] . .
(2) X € F2 iff the ec.f. of X 'has the form ¢(ElEl""’EpEp)’

3) X ¢ F3 iff the c.f. of X has the form ¢(trT'T).
Lemma 2. Suppose X has a pdf (probability density function).
Then

(1) XeF, 4iff the pdf of X has the form £(X'X);

~ A

(2) XefF, iff the pdf of X has the form f(X'Xl,...,x;xp);

(3) XeF, 4iff the pdf of X has the form F(erx'x).

Theorem 1.

(a) XeF, if X d U.A, where A and U, are independent, U, & F
-~ 1 ~ ~1< ~ ~1 ~1 1
' = .
and  U,U, L
d
F, i = = di S« = cen
(b) X e 5 iff X EZB’ where R dlag(Rl, ,Rp) and U, (Bl, ’Bp)
are independent, Ri-i 0, i =1,...,p, and ul,...,uP i.i.d. uy d u(n);
(¢) X ¢ F3 iff X d RU;, where R > 0 and U; are independent,
vec U3£°1- u(np).

The distribution of U is called the uniform distribution. The

~

matrices Ul’ U2 and U3 play roles of coordinate systems in Fl’

F2 and F3, respectively. In this paper when we write X d Rg3,

X = U2R, and X d UlA, they have the meaning in Theorem 1 unless we

[= N

make another explanation.



Lemma 3. The distribution of X 1is fully determined by that of
] . ] v 1 .
X'X if X € Fl’ by that of (x §l"'°’§p§p) if X e F2’ and by that

of trX'Xx if X e Fj.

e

Lemma 3 shows us that if X g Fl’ Y ¢ Fl’ and X'X
d

X =Y. Similar statements hold for FZ and F3.
"gll

Y'Y, then

The following properties of the operation are given by Anderson

and Fang (1982a):

(1) 1If X

Y and fi(°), i=1,...,m, are Borel functions, then

~ ~

d
(fl(}-\(.)’. °'afm()§)) = (fl(¥)3'°',fm(¥))-

(2) 1f =z 1is independent of X and Y, respectively, then

(a) X d Y dmplies 2zX d zY;

~ ~ ~

(b) if P(z > 0) =1 and the c.f. of log z ¢log z(t) # 0 for

almost all t then zX ¢ zY implies X d Y.

~ ~ ~

Lemma 4. Suppose X € Fl and P(]§'§|=O) = 0, then

d U § implies A 2 B, where A and B are two upper

1

triangular matrices with positive diagonal elements;

(2) X d QT, where Q'Q = }p and T is an upper triangular matrix with

~ A

positive diagonal elements, implies Q d Ul and Q is independent of T.

Proof. The existence of A in (1) follows from the argument of
Dawid (1977). We consider mapping f: A =+ £(A) = A'A, where A is an

upper triangular matrix with positive diagonal elements. Clearly, f

d

is a one-to-one mapping. As A'A = B'B, then (1) follows from

=

E[h(a)] = E[h(f-l(é'é))] = E[h(f "(B'B))] = E[h(B)] for each Borel



function h > 0. WNote that if |X'X| # 0, there is a unique decom-

position X = QT, where Q'Q = Ip and T 1is an upper triangular
matrix with positive diagonal elements. Let the function g(X) = (Q,T),
we have (Q,T) = g(X) d g(UlA) = (Ul,A) as X d UlA’ which completes

~

the proof. Q.E.D.

From now on when we write X d UlA for X ¢ Fl’ we always consider

that A 1is an upper triangular matrix with nonnegative diagonal elements.

3. Relationships among F,, FZ’ F3.

By Definition 1, clearly Fl > F2 > F3. But how much are the

differences among them at all? In this section, we will discuss them
in the following aspects: the coordinate system and the coordinate
transformations, marginal distributions, marginal densities and spheri-

city. First of all, start with Ul’ U2 and U3.

Lemma 5. Suppose X ¢ Fl and P(xi=0) =0, i=1,...,p. Then

X e FZ iff X satisfies the following conditions:

(1) §1/H§1H,...,§p/H§pH are independent; and

(2) (H§ﬂf,...,H§J|) and (§1/H§ﬂ|,...,§p/H§pH) are independent.
Proof. The assertion follows from Anderson and Fang (1982b). Q.E.D.
Corollary 1. gl ¢ FZ'

1.1 ~1 ~1

are not independent, the corollary follows from Lemma 5. Q.E.D.

' = =
Proof. As g U Ep and gl e Fl’ U (u "."Ep) where

u a0 e 4ol
21 *p



Lemma 6. U, ¢ F3.

Proof. Suppose U, = (gl,...,gp) = (E(l)""’g(n))'éFB’ then

U, d RU; for some R > 0 being independent of U,. As

IRRERIR
are independent and E(i) (i =1,...,n) has a spherical distribution,
the distribution of Uiy must be normal and the distribution of gz
must be normal by Kelker (1970). The contradiction proves the

theorem. Q.E.D.

The following example shows us that the condition (2) in Lemma 5

is necessary, and its distribution belongs to Fl’ but not to FZ'

Example 1. Let X be an nxp random matrix with a pdf £(X) =

=L
c|Ip+X'X| 3(n+p) , where c¢ 1is a constant. We want to prove that

~

Qg veeenll) = Rpaever) and G/l oo/l = 0 are

not independent. It is easy to see that if g = diag(Rl,...,RD) and

U are independent, then £(X) = f£(UR) can be written in the form of

~

f(g) = gl(g)gz(g); similarly IEP+§'§| = hl(E)hz(g) for some two

functions hl and h2' Take R = Ip and U'U = Ip, respectively,

to show
|1 +X'x| = |I_+RU'OR| = k|I 2|1 |,
~p~~ ~p~~~~ ~p~ ~P~~

for each R = diag(Rl,...,Rp) with R

l>0,...,Rp>0, U= (Bl,...,gp),
and u]!_ui =1, i=1,...,p, where k is a constant. Let R = t_lIP,

t > 0, we have



k| t?T +1 T +u'y]
~P ~Pp' NP~ ~

[t21p+U'U , for each t > 0,

2.p P P 2
k(1+t") I (l+li) I (t +Xi), for each t > 0,
i=1 i=1

where A A are the eigenvalues of U'U. Obviously, this is

TRREEETo
impossible. This contradiction reveals that R and U are not inde-~

pendent.

3.1 Coordinate transformations.

In this paragraph we try to give the stochastic representations for
Fl’ FZ and F3 under the same ''coordinate system'. Maybe they can help
us to understand these classes more clearly. The generalized Dirichlet

distribution defined by Anderson and Fang (1982a) will be used. Consider

d

2
1 =
a random vector (zl,...,zm) such that (zl,...,zm) =R (dl,...,dm),

where 0 < R v F(+), R 1is independent of (dl""’dm)’ d 4~-.-4—dm =1,

1
and (dl,...,dm_l) N Dm(al,...,am_l;am) (Dirichlet distribution) with
OlpseeesO >0 and n = 2(@14--..4-am) is an integer; we write

(zl,...,zm_l) v Gm(ocl,...,ocm_l;ocm;F) or (zl,...,zm) v Gm(ocl,...,ocm;F).

Anderson and Fang (1982b) pointed out that if U d U,R with

U = DR
o 2 2 1 L .1
8 = dlag(Rl,...,Rp), then (Rl,...,Rp_l) N Dp(in"°"§ﬂ’§n) and
2 2 d N d
Rl-k-.-—FRp = 1. Also % = RHB £ F3 and R Vv F(+) 4iff % = 925
. 2 .2 2 1 1
with R™ = dlag(Rl,...,Rp) N GPCEn,...,En,F).

Let g = (yij) = (zl,...,zp) be an nxp random matrix with

i.i.d. elements and yij n N(0,1). There exists an upper triangular

~ o~

matrix T = (tij) with positive diagonal elements such that T'T = Y'Y.



This is the famous Bartlett decomposition. It is a well-known fact

that {tij’ 1<i<j<p} are independent, t4j v N(0,1) for i < j
2 2
v i = = 1
and tii Xg_i+1> * 1,...,p. Let Ej (tlj""’tjj) s

j=1,...,p. Then we have

2 Q g é, where é is an upper triangular
d

matrix with positive diagonal elements. Then A = TR—l, where

~a

Theorem 2. Suppose U

R = atag(lll ool I

d  d }
Proof. As (glﬂlgﬂl,...,zp/ﬂgplb SU,SUA and Y'Y =T'T, we
have zizi = Eigi’ i=1,...,p, and
d -1 -1 -1
T = F=3 =
J,4 = IR (¥12---27)R QIR

where QT is the Bartlett decomposition for (yl""’Zp) and 9'9 = Ep.

By Lemma 4, we have TR—l d A which completes the proocf. Q.E.D.

. = = v = '
Remark. Le? A (aij)’ a; = (@ se-ena, 0" 8y (ali""’ai—l,i)
and §i2) = (aii,...,aii), i=1,...,p. Then by Theorem 2, we obtain the

following facts:

(1) al,...,ap are independent;

%
(2) ay g Y where U is the first (k-1)-component subvector of
u(n), k=2,...,p; and
2 1 11
(3) %1(( ) v Dk(_,'--a_z-,_i(n_k)), k = 2"-'ap'

~

Corollary 1. X € F2 iff X d U.AR, where U,, A, and

s
~ ~l~~ =1 <

R = diag(Rl,...,Rp)_Z 0 are independent, and A is given by Theorem 2.

Theorem 3. Let U, d U;B; then B d Z/(tr?'?)l/z.



Proof. By using the above notation, we have Y'(trY'Y)

and T'T/txT'T = Y'Y/txrY'Y d B'B. Note B is also an upper triangular

~

matrix with positive diagonal elements, then B d T/(trT'T)l/z. Q.E.D.

Corollary 1. X ¢ F3 iff X d RU.B, where R > 0, Ul’

are independent, and B 1is given by Theorem 3.

and B

3.2 Classes of marginal distributions.

Let F; (1=1,2,3) denote the set of first columns of X's 1in
Fi (1=1,2,3), i.e., x € Fi iff there exist X2""’Xp such that

X = (X,XZ,...,XP) € Fi (i=1,2,3). Similarly, F; indicates a set of

~ ~

the first row vector of X in Fi (i=1,2,3). Clearly F; > Fg 5 Fg

r T r . c _ o, .
and Fl > FZ > F3, since 'Fl =) F2 > F3. Also F2 = Fl’y in fact if

X € Fi let XZ""’Xp be p-1 nx1 random vectors such that

§’§2""’§p are iid; thus X = (§,§2,...,§p) ) F2. Here we use a

~

useful fact that if X = (Xl,...,Xp) with Xl""’xp i.i.d. and

. c c
XN ECn(g,En,¢), then X € FZ' Naturally, one may ask if F3 = F2

holds. But that is not true. First, we need the following lemma.

n+ . s .
Lemma 7. Qn(t't) with t ¢ R 1 is not an n+l-dimensional c.f.

1 is an (n+l)-dimensional

+
Proof. Suppose Qn(t't) with t e R”
c.f. Then there exists a distribution function F such that (c.f.
Cambanis, Huang and Simons (1981))

{oe]

(3.1) Qn(u) = jo Qn+l(ur2) d¥ (r), u>0,



i.e., u = Ru_, where R is independent of u R >0 and u
n n’ - 7 n

~ ~ ~

u(n+l)

is the subvector of with the first n components. Since u

has a pdf and P(R=0) = P(Ru_=0) = pw™=0) =0, v has a pdt.

~

This is a contradiction, which completes the proof. Q.E.D.

Theorem 4. The set Fg is a proper subset of 'FZ if p > 1.

(n)

c .
u . Clearly, u € FZ’ we want to point out

flen

Proof. Let

&=

1=

¢ F;. Suppose

re
™M

FC; then there exist u,,...,u_such that
3 ) uy

U= (u,uz,...,up) € F3. Let ¢(trT'T) denote the c.f. of U. Then

2t

. 1 —_ T n > . - .
the c.f. of u is ¢(ElEl) = Qn(ElEl), 1€ R, i.e., o(*) Qn( ).
That means that Qn(t't) = ¢(t't), t e Rnp’ is a ¢c.f. By Lemma 7,

the contradiction proves the theorem. Q.E.D.

Let us consider the row marginal distributions. First, we want to

point out that F; is a proper subset of Fi .

- = '
Lemma 8. Suppose X = (§l,...,§p) (§(l)"°"§(n)) € F2 and the

covariance of X(l) exists. Then

(L Cov(g(i),§(j)) = ai'Ai’ where éi is a diagonal matrix and

~

Gii =1, and éij =0, i # j, i,j=1,...,0, and
(2) Cov{x.,,x.) =86 62 I where 62. will be given in the proof
Xi0%y ij°ii<n’ 1i ’

i,j=1,...,p.

Proof. Clearly, x(l)""’§(n) are identically distributed and

d
(3.2) X = EZE = (ngl,...,RPEp) ,

10



where B, Bl""’gp are independent. As Egz = 9, we have E§(k)==9,
and Exj =0 for k=1,...,n; j=1,...,p. By (3.2)
Cov(xX,,v,X,.y) = Ex, . x'., = diag(ERzEu. U, 5e.. ERzEu u, ) .
~(1)°5 () ~(L)~(@) 17741751 >7p ip jp
The first assertion follows from Euikujk =0 for 1i#j; k=1,...,p.
Similarly, Ex,x! = ER.R,Eu.u' = 6,,ER?I /n. and the Lemma follows.
~ivi i ~1i<j ij 7 i~n

Let §(l)""’§(n) be i.i.d., X (1) 4y N(g}g) and § is not a

diagonal matrix; by Lemma 8, then x

X(1) £ F;, but X(1) £ Fi. Thus

F; is a proper subset of Fi.

» ' .
Theorem 5. Suppose X (§(l)""’§(n)) € F2, then X € F3 iff

r
X(1) € F3.

Proof. The "only if'" part is obvious. Suppose (1) € Fg; then

§(l) has a c.f. ¢(Ezl)g(l))’ where ¢(Ezl)5(l)+"'+tzn)E(n)) is a

~

c.f. in R"™P. On the other hand, since X ¢ FZ’ X has a c.f.

Tt ,...,t! .
w(El~1’ ’EPEP) Hence we must have

(3.3) ¢(ri+---+r§) - U)(ri,...,ri), for r, >0, i=1,...,p,

i —

because they are all the c.f. of By (3.3), we have

X(l).
¢(Eigl+~--+EéED) = W(Eigl,...,gégp) for all L, € Rn, i=1,...,p, i.e.,

~

x € F3. The theorem follows. Q.E.D.

. r
Corollary 1. Suppose X e F2. Then X(1) € F3

~

iff X (1) 4y Sp(¢).

Proof. The "only if" part is trivial. Now suppose %1) v Sp(¢).

By Theorem 5, we get X ¢ F3 since X ¢ F2 and X(1) € Fg. Q.E.D.

~

11



. , r
Corollary 2. The first row E(l) of Ul is not in F2'

Proof. Assume u(l) £ Fg, then there exists Y such that

~

(u(l), )! As U1 is right spherical (Dawid (1977)), there-

fore Sy v Sp(¢) and uqy € Fg by X € FZ and Corollary 1 of

1

Theorem 5. However, it is impossible (cf. the following example).

r
Hence, 4y ¢ FZ' Q.E.D.

Example 2. Suppose X g glé’ where Ul and A are independent,
= { < = = = - = < { =
and A dlag(al,...,ap), 0 1 P(ai 1 1 P(ai 0) 1, i=1,...,p,

al+---+aP = 1. Clearly X € Fl’ but X ¢ FZ by Theorem 2. We, however,

d T
want to show §(l) = ég(l) € FZ’ where E(l) is the first row of Ul
. 2 2
It can be shown that the c.f. of E(l) is Qn(tl+ +tp) by the
sphericity of U,. And §(l) has a c.f.
2 2 2.2 2
(3.4) w(tl,...,tp) = J Qn(altl+- P) dF(a .o ap)

_ 2
= izl Py, (t3)

By (3.4), we have

«sD .

i
P“TU
i
'..I
u
7~
15p
v
(w3
™
£
'_I
i
|—l

\ 1
(Rt e b it )

. . n .
As Q (ElE ) is a c.f. in R and Z?=l Py = 1, p; > 0, i=1,...,p,

=8

~

1 ] . . =
hence w(ElEl"'°’EpEp) 1svthe c.f. of some Y in F2 and Yy - ¥ay’

. . . r
where Z(l) is the first row of g, that means §(l) € FZ'

12



Example 2 shows us that FZ’ related to Fl’ cannot be charac-
terized by its row marginal distributions. But for F3, related to

FZ’ it can by Theorem 5. Further, it is easy to show that if

X, X € F2 and §(l) d X(l)’ we have X d Y. However, there is no

~

such property for Fl'

3.3 Marginal densities.

Let X ¢ Fi’ i=1,2,3. 1In general it is not necessary that X
has a density. If % satisfies some suitable additional condition on
X, it will have marginal densities.

Suppose § d Rg £ F3; if P(§=9) = P(R=0) = 0, then all
marginal densities exist (Kelker (1970)). Suppose % d (ngl,...,RpHp)E:Fz;
if P(§i=9) = P(Ri=0) =0, X has all marginal densities; if
P(§i=9) =0, i=1,...,p, then X has marginal demsities of‘a set of
elements such that at least one element in each colum of X has been
deleted. Also, we can prove that if Xe Fl and P(l§'§l=0) = 0, then

(

Xll"'"xn—l,l’XlZ"'"Xn—2,2"'"le""’xn—p,p) and all its subsets

have marginal densities.
Further, if X d U2R € Fz, it is easy to see that X has a pdf
fX(§i§l""’§é§p) iff R has a pdf fR(rl""’rp)’ and there exists the

~

following relationship between them (cf. Zhang and Fang (1982), Ch. 9):

2 1 - -1 2 2
Ep(rpseeesry) = (2PrP/ (r&n)) P)(rl---rp)“ Ee(reesth), Typeer >0,

Similarly, suppose X d U,A € Fl’ where A = (aij) is an upper trian-

gular matrix with positive diagonal elements; then X has a pdf fX(§'X)

~

13



iff ‘A has a pdf fA(é), and fA is related»to fX as follows:

-~ ~

L(ATA I’(%(n—i+1) e

-1 (e P s
£,(8) = 2PpPR/2P(e-1)/4 a3 (A'A/
~ ) i=1 ~

p
Il
i=1

(cf. Srivastava and Khatri (1979)).

4._ The Class of Spherical Matrix Distributions.

Let A>0 bea pXp matrix and Xl_z cee z_lp > 0 be the

eigenvalues of A. We write X{A) = diag(kl,...,kp).

Definition 2. (Dawid (1977)). A random nXp matrix X is called

spherical if X and X' are left-spherical, i.e., PXQ d X for each

~ -~

Pe0(n) and Q € 0(p). Denote Fs = {X: X is sphericall.
© Lemma 9. (Dawid). X ¢ FS iff X d U, AV, where Ul,A, and V

1/2

are independent, A = A((X'X) )y, TV d vV, V'V = IP for each T e 0(p).

~ .

The class of Fs was studied by Dawid. The c.f. of X din F
must have the form ¢(A(T'I)), because the maximum invariant of

T(T:nXp) under the transformation PTQ for each P & 0(n) and each

~ .

Q€ 0(p), dis A{(T'T). It is easy to see Fl >F o F3 and Ul

If X ¢ FZ’ it is not necessary that X € FS, and vice versa. For

e F_.

s
example, the X in Example 1 belongs to Fg, but X ¢ FZ' By the
following theorem, we see that U, £ Fs'

Theorem 6. f3 = Fs n FZ'

Proof. C(Clearly, F3 c Fs n F2’ Conversely, if X € Fs n FZ’ the

14



(3.

—— 1 P .
fact X = (f(l)""’§(n)) € Fs implies §(l).m Sp(¢) and X e Fq

from Corollary 1 of Theorem 5. The theorem follows. Q.E.D.

d

Theorem 7. Let U, = U,AV, where Ul,A, and V have the

=3 ~l~a~

meaning in Lemma 9. Denote A2 = diag(Kl,...,kp), Al > .
then
Oyseesd) & (w W)/ (gt ot )
13 e ey p l""’ p 1 p s
where wl,...,wp are p eigenvalues of W Wp(n,gp), and
(Al,...,kp_l) has a joint density
/21 (ap/2) 7(-p-D)
) EOp,euh ) =5 £ lxl,...,xp| i
1 I,(Q-OL)F(n—oc) 1<i<ji<p
0=0 2 2

O, > ove > 2 >0 and A = 1-A_~e+-=)
P 1

1 p-1

and (Al,...,kp_l) is independent of w = wl+--'+wp.

Proof. Let Y= (Zl""’Zp) with NEERRRE/ i.i.d.

~P
. 1/24 .. d
1
Y1 N Nn(g,En). Then Z/(trg X)

~3 ~1l~~

diag(Kl,...,Kp). Note that A{Y'Y/trY'Y) = A(Y'Y)/tr(Y'Y) and

VY EWAW @D, tr('Y) = wpkeehw and A = diaglp,..

< 1

._>_»)\

20,

Qu, 2 U AV and AT'Y/ery'y) S

,Wp) s

the first part of the theorem follows. To check (3.5), we note that

(wl,...,wp) has the following pdf (cf. Anderson (1958) or Zhang and

Fang (1982)):
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1.,

p/2 b o 2 (gt )
p_lﬂ I W;../Z(n p-1) 1 (wi_wj)e 21 P
2np/2 I F(E;a)T(nga) i=1 i<j

o=0

(3.6)

> see > >
Wy WP 0.

Taking the transformation

>
|

= Wi/(wl+" 'Wp)a i= la"',p_l s

the Jacobian is Ap—l. Let kp = l—kl — e Ap—l' Now (3.6) becomes

[ . p/2 11
- . 1 . . i |
T s sy il 1cicgep BT |
N 2 2

which completes the proof. Q.E.D.

Assume X d UlAV £ Fs (cf. Lemma 9), then X has a pdf

f§(X(§'§)) if é has a pdf fA(Xl,...,Xp), and fA is related to

f as follows (cf. Theorem 13.3.1. of Anderson (1958))

X
p(ntl)/2 1
= T %(n-p-1)
B Op e hy) =g Oy -0 )
I TEDITED
o=0
iEj (xi-xj) fX(diag(Xl,...,kp)) L AL > A >0

Theorem 8. Assume X € Fs with independent columns (or rows), then

X must be normal.

16



Proof. From the assumption, the c.f. of X is HE ¢(t£ti)’ i.e.,
X € F2. By Theorem 6, X ¢ F3. The assertion follows from Kelker

(1970). Q.E.D.

This theorem shows that we, in general, should consider dependent

sample theory in Fs' If X ¢ F3, the c.f. of X has the form

¢(K(I'I)) = ¢(diag(Xl,...,Ap)) = w(Al+°'°+Xp), i.e., the c.f. is the function
- ) ) 1
of Al +...4+ Xp. Here Kl,...,AP are the eigenvalues of T'T in EetT I §.

We may consider other functions of A1,...,xp to obtain other different

subclasses of FS.

5. Applications.

+ +
Let F3 ={X ¢ Fy: P(X=0)=0}, Fy = {geFZ: P(x,=0)=0, i=1,...,p},

and FI = {§E:Fl: P([%'XI=O)=O}. We call a statistic t(%) distribution

free on F; if t(%) d t(¥Y) for any X,Y ¢ FI; i=1,2,3, respectively.

Theorem 9. Suppose t(X) is a statistic. Then

(a) t(%) is distribution free on F; iff t(ag) d t(§) for each a > 0;

d

(b) t(X) dis distribution free on Fr iff tXr) t(X) for each
~ 2 ~ ~ ~

T = diag(rl,...,rp), r, >0, i=1,...,p; and

e

+
(c) tX) is distribution free on Fl iff t(%A) t(X) for each A,

an upper triangular matrix with positive diagonal elements.

Proof. We only prove (b); the other proofs are similar. The "only

+
if" part is trivial. Suppose X € F, and X d
~ 2 p

gzg, where

R = diag(Rl,...,Rp), Ri >0, i=1,...,p, and U, 1is independent of R.
Then for each Borel function h > 0, we have (by using the assumption
that t(%g) d t(%) for each r)

~
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E((t(X))) = E((tW,R))) = Ep (B(h(£(U,R))[R))

B (B (B(£(0R))) = By By (a(e(Uy)))

E(h(t(U,))) ,
which is independent of X din F;, the sufficiency follows. Q.E.D.

Remark 1. The assertions (a) and (c) are essentially from Kariya

(1981a), but the statement here is a little different from his.

Remark 2. In this paper we have only studied Fl’ FZ’ and F3
for the case of central standard spherical matrices. If we consider
1/2

the following transformations: Fl - ﬁgﬂg: §E:Fl}, F2 -~ {xZ +M:X£:F2}

and Fé'+ {§21/2+§: Xe F3}, where M 1s an nXp constant matrix and
L= 21/221/2 is a positive definite matrix, we can generalize our
results.

In the rest of this section denote § € Fz (i=1,2 or 3) and
W= §'Qn§, where D = }n—}n}n/n and }n = (1,...,1)'. For convenience
of applications, some basic invariant statistics in FI, in F;, and in
F; are listed in Table 1. They are

(1) The Wilks statistic. Let X = (g',géy, §l: n, Xp, %2: n, % p,

n; > p, and ny, > p. Let W =XD X, k=1,2. The Wilks statistic

it ~ >
k k . k
is
0, @ = | [/ +, |
(2) The multivariate Beta statistic. Let WO = yl+w2, where Wl
and W2 are given in (1). The multivariate Beta statistic is

18



_ L2 -1/2
& =W HE

(3) The Hotelling Tz—statistic. It is

1

3 = n@-Dx'W X,

where x = X'

2 =

/n.
n

Table 1.

Distribution-free Properties of the Invariant Statistics

Statistics FI FZ F;
tl(X) free free free
tz(X) free free free
t3(X) free free free
t4(X) free free free
tS(X) not free free
t6(X) not free free
t7(X) _ not not free

't8(X) not not not
tg(X) not not not

(4) The statistic testing equality of covariance matrices.
Partition X = (%',...,%L)', where X : n Xp, m > P, k=1,...,1.

Let W =X'D X, k=1,...,r and W, = IW The statistic is

, .
~k k nk~k ~0 k

19



T n, /

2
® =T Ju ] /2

t |
Lk

4

(5) The correlation coefficients. It is easy to see that the
sample correlation coefficient between x., and x. can be expressed

as

x,/(x!D x.x'D xj)l/2 .

r,, = x'D
~isn~j’ "~i<n~i~jan~

1]
Let

£5 (0 =R = (r;) .

(6) The canonical correlation coefficients. Partition W into

Wi Yo

W= s Wyit gxg, W ot (p-q) % (p-q) .
~ Y1 W ~11 ~22

The canonical correlation coefficients t6(X) are the eigenvalues of

W wotwo wt

WioWooWo W1 When q = 1, we get the multiple correlation coefficient.

(7) Testing the hypothesis that a covariance matrix is proportional

to a given matrix. Assume Cov(x(l)) = } exists; the statistic testing

H: I = 022 >0 is
< 20
_ el -1 P
t; ) = I W[/ (ex Gy /)T .

(8) Testing the hypothesis that a covariance matrix is equal to

a given matrix. The statistic testing H: I = ZO > 0 is

£ = [Wi M Pexp-Fer i Iph)

20



(9) The generalized variance.

tg(X) = |X'D X[ .
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